Вычислите выражение
Ответы
</p> <p> </p> <p> </p> <p><img src=[/tex]frac{1}{2}sinfrac{pi}{6}(1 - frac{1}{4}(frac{1 - cosfrac{pi}{6}}{2})) = frac{1}{2}*frac{1}{2}*(1 - frac{1}{8}(1 - frac{sqrt{3}}{2})) =\\ frac{1}{4}(1 - frac{1}{8} + frac{sqrt{3}}{16})= frac{1}{4}*(frac{14+sqrt{3}}{16}) = boxed{frac{14 + sqrt{3}}{64}}" title="[cos2x = cos^2x - sin^2x]\\ sinfrac{pi}{12}cosfrac{pi}{12}(1 - cos^2frac{pi}{24}sin^2frac{pi}{24}) = \\ frac{1}{2}sinfrac{pi}{6}(1 - frac{1}{4}(sin^2frac{pi}{12})) = " title="frac{1}{2}sinfrac{pi}{6}(1 - frac{1}{4}(frac{1 - cosfrac{pi}{6}}{2})) = frac{1}{2}*frac{1}{2}*(1 - frac{1}{8}(1 - frac{sqrt{3}}{2})) =\\ frac{1}{4}(1 - frac{1}{8} + frac{sqrt{3}}{16})= frac{1}{4}*(frac{14+sqrt{3}}{16}) = boxed{frac{14 + sqrt{3}}{64}}" title="[cos2x = cos^2x - sin^2x]\\ sinfrac{pi}{12}cosfrac{pi}{12}(1 - cos^2frac{pi}{24}sin^2frac{pi}{24}) = \\ frac{1}{2}sinfrac{pi}{6}(1 - frac{1}{4}(sin^2frac{pi}{12})) = " alt="frac{1}{2}sinfrac{pi}{6}(1 - frac{1}{4}(frac{1 - cosfrac{pi}{6}}{2})) = frac{1}{2}*frac{1}{2}*(1 - frac{1}{8}(1 - frac{sqrt{3}}{2})) =\\ frac{1}{4}(1 - frac{1}{8} + frac{sqrt{3}}{16})= frac{1}{4}*(frac{14+sqrt{3}}{16}) = boxed{frac{14 + sqrt{3}}{64}}" title="[cos2x = cos^2x - sin^2x]\\ sinfrac{pi}{12}cosfrac{pi}{12}(1 - cos^2frac{pi}{24}sin^2frac{pi}{24}) = \\ frac{1}{2}sinfrac{pi}{6}(1 - frac{1}{4}(sin^2frac{pi}{12})) = " />
[tex]frac{1}{2}sinfrac{pi}{6}(1 - frac{1}{4}(frac{1 - cosfrac{pi}{6}}{2})) = frac{1}{2}*frac{1}{2}*(1 - frac{1}{8}(1 - frac{sqrt{3}}{2})) =\\ frac{1}{4}(1 - frac{1}{8} + frac{sqrt{3}}{16})= frac{1}{4}*(frac{14+sqrt{3}}{16}) = boxed{frac{14 + sqrt{3}}{64}}" />