Предмет: Алгебра,
автор: Gatay
Найдите площадь фигуры ограниченной линиями y=5/x и y=6-x
Ответы
Автор ответа:
0
Находим границы фигуры.
5/х = 6-х.
Получаем квадратное уравнение х²-6х+5 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-6)^2-4*1*5=36-4*5=36-20=16;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√16-(-6))/(2*1)=(4-(-6))/2=(4+6)/2=10/2=5;x₂=(-√16-(-6))/(2*1)=(-4-(-6))/2=(-4+6)/2=2/2=1.
Отсюда площадь фигуры между этими линиями равна (с учётом того, что прямая проходит выше гиперболы).
≈3,95281.
5/х = 6-х.
Получаем квадратное уравнение х²-6х+5 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-6)^2-4*1*5=36-4*5=36-20=16;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√16-(-6))/(2*1)=(4-(-6))/2=(4+6)/2=10/2=5;x₂=(-√16-(-6))/(2*1)=(-4-(-6))/2=(-4+6)/2=2/2=1.
Отсюда площадь фигуры между этими линиями равна (с учётом того, что прямая проходит выше гиперболы).
≈3,95281.
Приложения:
Похожие вопросы
Предмет: География,
автор: udalcovnikita1
Предмет: Биология,
автор: Аноним
Предмет: Русский язык,
автор: lololoskaloh955
Предмет: Математика,
автор: Ulay13