Предмет: Алгебра, автор: annagu

найти наибольшее двузначное число n при котором остаток от деления числа 3 в степени n на 7 равен 5, если такое число существует

Ответы

Автор ответа: Аноним
0

В теории чисел (делимость и сравнение по модулю) доказывается, что остатки от деления повторяются с некоторым периодом.

В данной задаче остатки от деления числа 3^n на 7 при увеличении n повторяются с периодом 6:

первое число, при делении на 7 дающее в остатке 5, это  число 243 (при n=5), следующее 177147 (при n=11) и т.д.

Подробнее:

n=5      3^n=243=34*7+5

n=11    3^n=177147=25306*7+5

n=17    3^n=...

n=23    3^n=...

...

Можем записать

3^(5+6k)=N*7+5

где k=0,1,2,3,4,...

По условию задачи n-двузначное число, следовательно

5+6k leq 99

отсюда максимально возможное значение k=15

n=5+6*15=95

 

Ответ: наибольшее двузначное число n=95

 

 

Похожие вопросы
Предмет: Математика, автор: maryna9754