Предмет: Информатика, автор: LaLeka

75 баллов за качественное решение и понятное объяснение. Выберу как лучший ответ.

Приложения:

Ответы

Автор ответа: JProtos
0

По определению импликации, для всех значений A, B выполнено:

A / ¬B  =  B → AПо правилу Де Моргана  и определению импликации, выполнено:

(¬A)/B  =  ¬(A/ ¬B) = ¬ (B→A)Поэтому исходную систему можно переписать в виде:

(x2 → x1) /  ¬ (x4→x3)  = 1           
(x4 → x3) /  ¬ (x6→x5)  = 1
(x6 → x5) /  ¬ (x8→x7)  = 1
(x8 → x7) /  ¬ (x10→x9)  = 1

Сделаем замену:
t1 = x2 => x1;
t2 = x4 => x3;

t3 = x6 => x5;

t4 = x8 =>x7;

t5 = x10 =>x9.

Получим систему:
t1 / ¬ t2 = 1
t2 / ¬ t3 = 1
t3 / ¬ t4 = 1
t4 / ¬ t5 = 1

Снова применим определение импликации. Получим:
t2 => t1 = 1                                   

t3 =>t2 = 1

t4 => t3 = 1

t5 => t4 = 1

Эта система имеет 6 решений:
00000; 10000; 11000; 11100; 11110; 11111

N1(0)*N2(0)*…*N5(0)


Здесь N1(0) – количество пар значений переменных x1, x2, при которых t1=0;  N2(0) – количество пар значений переменных x3, x4, при которых t2=0 и т.д. Аналогично, через N1(1) будем обозначать количество пар значений переменных x1, x2, при которых t1=1 и т.д.
все замены имеют вид T = A→ B . Поэтому:

N1(0) = N2(0) = … = N5(0) = 1

и

N1(1) = N2(1) = … = N5(1) = 3

Учитываем, что  A=> B = 0 только при A=1, B=0. В остальных трех возможных случаях, то есть при A=1, B=1; A=0, B=0; A=0, B=1, выполнено A=> B = 1

Таким образом решению 00000 системы (соответствует 1*1*1*1*1 = 1 решение системы . То есть:
x1=0, x2 = 1, x3=0, x4 = 1, x5=0, x6 = 1, x7=0, x8 = 1, x9=0, x10 = 1.
Аналогично,
для 10000 существует 3*1*1*1*1 = 3 решений системы ;
для 11000 существует 3*3*1*1*1 = 32 = 9 решений системы ;
для 11100 существует 3*3*3*1*1 = 33 = 27 решений системы ;
для 11110 существует 3*3*3*3*1 = 34 = 81 решений системы ;
для 11111 существует 3*3*3*3*3 = 35 = 243 решений системы;

Следовательно,  1+3+9+27+81+243 = 364.
Ответ: 364.



Похожие вопросы
Предмет: Русский язык, автор: sadvakassalta156