Предмет: Математика,
автор: unknown00200
Длина и ширина помещения прямоугольной формы выражаются целыми числами метров. Численное значение его периметра (в м) отличается от численного значения площади (в м2) на целое число. 1) Каковы размеры помещения, если численное значение его периметра (в м) отличается от численного значения площади (в м2) на 7? 2) Каковы размеры помещения, если его длина в 3 раза больше ширины и периметр больше площади? 3) При каких размерах помещения его периметр больше площади, если выполнены условия задания и ширина больше 2 м?
Ответы
Автор ответа:
0
Размеры помещения а м и b м. Площадь S = ab. Периметр P = 2a + 2b.
Считается, что длина не меньше ширины, ищем решения a >= b.
1) Здесь возможно два случая.
а) P > S. P - S = 7
2a + 2b - ab = 7
2a - 7 = b(a - 2)
b = (2a - 7)/(a - 2)
Варианты: (a = 1; b = 5); (3; -1); (4; 1/2); (5; 1).
Решение: (a=5; b=1). Других решений нет. b =/= 2 ни при каких а.
б) S > P. S - P = 7
ab - 2a - 2b = 7
b(a - 2) = 7 + 2a
b = (2a + 7)/(a - 2)
Варианты: (a = 1; b = -9); (3; 13); (4; 15/2); (5; 17/3); (6; 19/4); (7; 21/5);
(8; 23/6); (9; 25/7); (10; 27/8); (11; 29/9); (12; 31/10); (13; 3).
Решения: (a=13; b=3). Других решений нет, b =/= 2 ни при каких а.
Ответ: (5; 1); (13; 3)
2) a = 3b; P > S
P = 2a + 2b = 2*3b + 2b = 8b. S = ab = 3b*b = 3b^2
8b > 3b^2
3b < 8
b < 8/3 < 3
Варианты: (b = 1; a = 3); (b = 2; a = 6)
Ответ: (3; 1); (6; 2)
3) b > 2; P > S
2a + 2b > ab
2b > ab - 2a
a(b - 2) < 2b
a < 2b/(b - 2)
Если b > 2; то наименьшее целое b = 3
Если b = 3, то a < 2*3/(3 - 2) = 6. Решения: (3; 3); (4; 3); (5; 3)
Если b = 4, то a < 2*4/(4 - 2) = 4. a < b, решений нет.
Если b = 5, то a < 2*5/3 = 10/3. a < b, решений нет.
Другие решения искать смысла нет, а будет еще меньше.
Ответ: (3; 3); (4; 3); (5; 3)
Считается, что длина не меньше ширины, ищем решения a >= b.
1) Здесь возможно два случая.
а) P > S. P - S = 7
2a + 2b - ab = 7
2a - 7 = b(a - 2)
b = (2a - 7)/(a - 2)
Варианты: (a = 1; b = 5); (3; -1); (4; 1/2); (5; 1).
Решение: (a=5; b=1). Других решений нет. b =/= 2 ни при каких а.
б) S > P. S - P = 7
ab - 2a - 2b = 7
b(a - 2) = 7 + 2a
b = (2a + 7)/(a - 2)
Варианты: (a = 1; b = -9); (3; 13); (4; 15/2); (5; 17/3); (6; 19/4); (7; 21/5);
(8; 23/6); (9; 25/7); (10; 27/8); (11; 29/9); (12; 31/10); (13; 3).
Решения: (a=13; b=3). Других решений нет, b =/= 2 ни при каких а.
Ответ: (5; 1); (13; 3)
2) a = 3b; P > S
P = 2a + 2b = 2*3b + 2b = 8b. S = ab = 3b*b = 3b^2
8b > 3b^2
3b < 8
b < 8/3 < 3
Варианты: (b = 1; a = 3); (b = 2; a = 6)
Ответ: (3; 1); (6; 2)
3) b > 2; P > S
2a + 2b > ab
2b > ab - 2a
a(b - 2) < 2b
a < 2b/(b - 2)
Если b > 2; то наименьшее целое b = 3
Если b = 3, то a < 2*3/(3 - 2) = 6. Решения: (3; 3); (4; 3); (5; 3)
Если b = 4, то a < 2*4/(4 - 2) = 4. a < b, решений нет.
Если b = 5, то a < 2*5/3 = 10/3. a < b, решений нет.
Другие решения искать смысла нет, а будет еще меньше.
Ответ: (3; 3); (4; 3); (5; 3)
Похожие вопросы
Предмет: Биология,
автор: terka20009
Предмет: ОБЖ,
автор: prostoytapok
Предмет: Литература,
автор: pvaliulina5
Предмет: Математика,
автор: loveiscet
Предмет: Математика,
автор: гарник5