Предмет: Математика, автор: Giper2001

Решите систему уравнений: x^2+xy=4y; y^2+xy=4x

Ответы

Автор ответа: Bronzor1
0
x^2+xy=4y;           
+
y^2+xy=4x
2)
x^2+2xy+y^2=4x+4y привели два уравнения к одному
(x+y)^2=4(x+y) сокращаем по формулам сокращенного умножения
(x+y)=z заменяем множители для более легкого счёта
z^2-4z=0 уравнение после замены 
z(z-4)=0 
z=0
z=4 
x+y=4 переводим обратно z=(x+y) 
x=4-y выделяем х 
y^2+(4-y)*y=4(4-y) подставляем х  и решаем
y^2+4y-y^2=16-4y
8y=16
y=2
x=4-y
x=4-2=2

Автор ответа: Giper2001
0
Второе уранение напишите его пож
Автор ответа: yugolovin
0
y^2+xy=4x
Похожие вопросы
Предмет: Алгебра, автор: Аноним
Предмет: Алгебра, автор: Mark6293739
Предмет: История, автор: Ананасик12345678