Предмет: Алгебра,
автор: daryaka220797
Очень срочно,решите пожалуйста интеграл под номером 14
Приложения:
Ответы
Автор ответа:
0
∫(5+х)/(3x^2+1)dx
∫(x/3x²+1)+(56/3x²+1)dx={u=3x²+1; du=6xdx;dx=du/6x}=1/6∫du/u+5∫dx/(3x²+1)=
=logu/6+{s=√3dx}=logu/6+5/√3∫ds/(s²+1)=5tg⁻¹(s)/√3+logu/6=
=1/6log(3x²+1)+5tg⁻¹(√3x)/√3+c
∫(x/3x²+1)+(56/3x²+1)dx={u=3x²+1; du=6xdx;dx=du/6x}=1/6∫du/u+5∫dx/(3x²+1)=
=logu/6+{s=√3dx}=logu/6+5/√3∫ds/(s²+1)=5tg⁻¹(s)/√3+logu/6=
=1/6log(3x²+1)+5tg⁻¹(√3x)/√3+c
Автор ответа:
0
А от куда взялось 56?
Автор ответа:
0
опечатка это 5
Похожие вопросы