Предмет: Математика, автор: игнат49

Найдите x, у и z если х/1 = у/2 = z/3 =10

Ответы

Автор ответа: nowak18
0

1)

х+у=5                       

3x-2y+z=6                

x-5y+3z=-4                

 Из первого уравнения: х+у=5

х=5-у

Подставляем в третье:

5-у-5у+3z=-4

5-6у+3z=-4

3z-5у=-11

z=(5у-11)/3

Во второе вместо х и z подставляем:

3(5-у)-2у+(5у/3)-11/3=6

15-3у-2у+5у/3-11/3=6

-10у/3=-16/3

у=-16/3 * (-3/10)

у=1,6

х=5-1,6=3,4

z=(5*1,6-11)/3=-1

Ответ. х=3,4, у=1,6, z=-1  

2)х+у+z=3   

2x-y+z=2  

  3x-2y+z=2

Из третьего уравнения вычтем первое и второе:

-2у-z=-3

z=3-2y

Подставляем в первое уравнение:

х+у+3-2у=3

х-у=0

х=у

Во второе уравнение вместо Х и Z подставляем полученные выражения:

2у-у+3-2у=2

-у=-1

у=1

х=1

z=1

Ответ. х=1 у=1 z=1  

3)Из третьего вычитаем первое и второе:

-6у-6z=-6

у+z=1

y=1-z

Подставляем во второе уравнение:

х+2-2z-z=1

x-3z=-1

x=3z-1

Подставляем в третье:

9z-3-5+5z-4z=2

10z=10

z=1

x=2

y=0

Ответ. х=2 у=0 z=1  

4) Из второго Х:

 х=6-у+z

Из третьего находим У:

6-у+z-y-z=0

-2y=-6

y=3

x=6-3+z

x=3+z

Подставляем в первое уравнение и находим Z:

9+3z+6-5z=17

-2z=2

z=-1

x=2

Ответ. х=2 у=3 z=-1  

Похожие вопросы