Предмет: Геометрия,
автор: aikozima
Докажите,что прямые ,проходящие через середины сторон треугольника ,перпендикулярные соответствующим сторонам ,пересекаются в одной точке
Ответы
Автор ответа:
0
Пусть дан треугольник ABC (рисунок прилагается). Проведем серединные перпендикуляры к AC и BC. Они пересекутся в точке O (они не могут быть параллельными, так как иначе AC и BC были бы параллельными, либо совпадали).
Теперь опустим из O высоту OM на AB и докажем, что она является и медианой.
Для треугольника BOC:
OK - медиана и высота, значит BO = OC (треугольник BOC равнобедренный).
Для треугольника AOC:
OL - медиана и высота, значит AO = OC (треугольник AOC равнобедренный)
Отсюда AO=BO. Значит OM - высота равнобедренного треугольника. Отсюда OM - медиана.
Что и требовалось доказать.
Теперь опустим из O высоту OM на AB и докажем, что она является и медианой.
Для треугольника BOC:
OK - медиана и высота, значит BO = OC (треугольник BOC равнобедренный).
Для треугольника AOC:
OL - медиана и высота, значит AO = OC (треугольник AOC равнобедренный)
Отсюда AO=BO. Значит OM - высота равнобедренного треугольника. Отсюда OM - медиана.
Что и требовалось доказать.
Приложения:
Похожие вопросы
Предмет: Физика,
автор: patrusevaanastasia0
Предмет: Алгебра,
автор: malafeeva58
Предмет: Математика,
автор: sanchous1675
Предмет: Химия,
автор: Vika51504
Предмет: Математика,
автор: aelcheva