Предмет: Математика,
автор: polllinochkaa
Пожалуйста решите,очень срочно нужно!!!
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3 . Найдите радиус вписанной окружности треугольника ABC
Ответы
Автор ответа:
0
Т.к. tqA =СВ/АС=4/3, то СВ-4 части, АС-5ч, значит( по тороеме Пиф. АВ=5 ч.
Т.к высота, проведенная из вершины прямого угла делит треугольник на два подобных, икаждый их которых подобен исходному, то треугольник СВР подобен треугольнику АВС. , то отношение сходственных сторон и будет являться коеффициетом пропорциональности, т.е. СВ/АВ =4/5. Далее – линейные размеры подобных треугольников – ( медианы. Биссектрисы. Высоты и т.п., включая радиусы вписанных и описанных окружностей) относятся с тем же коэффициентом пропорциональности, то радиус вписанной в треугольник ВСР окружности. относится к радиусу вписанной в треугольник АВС окружности с тем же коэффициентом 4/5. Те 8/х=4/5 отсюда х=10
Ответ 10
Тк
Похожие вопросы
Предмет: Литература,
автор: belalovadilsana2
Предмет: Английский язык,
автор: aruanaserik16
Предмет: Химия,
автор: lika5948
Предмет: Информатика,
автор: kulebyka