Предмет: Геометрия, автор: 89378811339

докажите что если какую либо точку внутри параллелограма соединить со всеми его вершинами то сумма площадей двух из полученных треугольников не имеющих общих сторон равна  сумме площадей двух оставшихся треугольников 

Ответы

Автор ответа: Elizabeth023
0
Первый способ.
Пусть M — точка внутри параллелограмма ABCD, P и Q — её проекции на прямые BC и AD. Тогда
S(MBC) + S(AMD) = BC . MP + AD . MQ =
= AD . (MP + MQ) = AD . PQ,
причём PQ — высота параллелограмма ABCD. Поэтому найденная сумма равна половине площади параллелограмма.
Второй способ.
Через точку M, взятую внутри параллелограмма ABCD, проведём прямые, параллельные сторонам параллелограмма. Эти прямые разбивают параллелограмм на четыре меньших параллеллограмма. Диагонали AM, BM, CM и DM разбивают каждый из этих четырёх параллелограммов на два равных треугольника. Отсюда следует утверждение задачи.
Похожие вопросы
Предмет: Геометрия, автор: murrrs