Предмет: Алгебра,
автор: Dendimonka
3sinx=2ctgx+(2/sinx) Решите
Ответы
Автор ответа:
0
Ответ:
3sinx=2ctgx+(2/sinx) |*sinx
3sin^2x=2ctgx*sinx+2
3sin^2x-2ctgx*sinx=2
3sin^2x-2cosx=2
3(1-cos^2x)-2cosx=2
3-3cos^2x-2cosx-2=0
-3cos^2x-2cosx+1=0 |*(-1)
3cos^2x+2cosx-1=0
Пусть cos^2x=t,тогда:
3t^2+2t-1=0
D=4+1*3*4=16
t1=-2+4/6=2/6=1/3
t2=-2-4/6=-1
cos^2x=1/3
x=(-1)^K*arccos(1/3)+pik
cos^2x=-1
x=pik
3sinx=2ctgx+(2/sinx) |*sinx
3sin^2x=2ctgx*sinx+2
3sin^2x-2ctgx*sinx=2
3sin^2x-2cosx=2
3(1-cos^2x)-2cosx=2
3-3cos^2x-2cosx-2=0
-3cos^2x-2cosx+1=0 |*(-1)
3cos^2x+2cosx-1=0
Пусть cos^2x=t,тогда:
3t^2+2t-1=0
D=4+1*3*4=16
t1=-2+4/6=2/6=1/3
t2=-2-4/6=-1
cos^2x=1/3
x=(-1)^K*arccos(1/3)+pik
cos^2x=-1
x=pik
Похожие вопросы
Предмет: Английский язык,
автор: mariyaosokina089
Предмет: Английский язык,
автор: abdullinasofia6
Предмет: Английский язык,
автор: abdullinasofia6
Предмет: Математика,
автор: каринаnasertd
Предмет: Литература,
автор: marshankulovaa