Предмет: Математика,
автор: Vivelarevolution
Найти остаток от деления числа 6^592 + 2^596 на 7 .
Ответы
Автор ответа:
0
Остатки будут циклически повторяться, если возводить 6 в 0,1,2,3, и т. д степень (теорема есть в теории чисел, не известно каой уровень знания теории предполагается, но пусть мы это просто "заметили") Всего таких остатков будет 10 шт, затем повторение и т. д. Остаток от возведения 6 в степень 592 будет тот же, что и остаток от 6^2 то есть 3. (Остаток с номером=остатку от деления степени на 10=последняя цифра)
Похожие вопросы
Предмет: Химия,
автор: asanalisahmetov
Предмет: История,
автор: Аноним
Предмет: Математика,
автор: aklipa181
Предмет: Литература,
автор: Дуся11111
Предмет: Алгебра,
автор: dhuffjjbcjkcs