Предмет: Алгебра, автор: gregorpechorin

Решите уравнение

sin 5x + sin x + 2 sin^{2} x = 1

Ответы

Автор ответа: Гpaнт
0

sin 5x + sin x + 2 sin^{2}  x = 1


sin5x+sinx=2sin3xcos2x

1-2sin^2x=cos2x

2sin3xcos2x-cos2x=0

cos2x(2sin3x-1)=0


cos2x=0 \ 2x= pi /2+pi*n \ x= pi /4+ pi n/2 \\ 2sin3x-1=0 \ sin3x=1/2 \ 3x=(-1)^k* pi /6+pik \ x=(-1)^k* pi /18+  pi *k/3

Похожие вопросы