Предмет: Алгебра, автор: polyakonoplitsk

Привидите дроби к общему знаменателю:
а) х/х-5 и 3/5-х;
б) х/(х-4)^2 и 7/х^2-16;
в) 5/х+1 и 7/х-2;
г) 4/х-6 и х/6-х;
д) х/(х+5)^2 и 5/x^2-25;
е) 4/х-3 и 2/х+2;
ж) х/х-8 и 4х/24-3х;
з)x/(6-x)^2;
и)11/3x+4 и 12/2х-3;
к)х/х-7 и 11/21-3х;
л)x/(7x-x)^2 и 4/x^2-49;
м)13/3х-4 и 11/2х+3.

Ответы

Автор ответа: mefody66
0
а) х/(х-5) и 3/(5-х) = -3/(x-5);
б) х/(х-4)^2 = x(x+4)/[(x-4)^2*(x+4])] = (x^2+4x)/
[(x-4)^2*(x+4])]
7/(х^2-16) = 7/[(x-4)(x+4)] = 7(x-4)/
[(x-4)^2*(x+4])] = (7x-28)/[(x-4)^2*(x+4])];
в) 5/(х+1) = 5(x-2)/[(x-2)(x+1)] = (5x-10)/
[(x-2)(x+1)]
7/(х-2) = 7(x+1)/
[(x-2)(x+1)] = (7x+7)/[(x-2)(x+1)];
г) 4/(х-6) и х/(6-х) = -x/(x-6);
д) х/(х+5)^2 = x(x-5)/[
(х+5)^2*(x-5)] = (x^2-5x)/[(х+5)^2*(x-5)]
5/(x^2-25) = 5/
[(х+5)*(x-5)] = 5(x+5)/[(х+5)^2*(x-5)] = (5x+25)/[(х+5)^2*(x-5)];
е) 4/(х-3) = 4(x+2)/[(x-3)(x+2)] = (4x+8)/
[(x-3)(x+2)]
2/(х+2) = 2(x-3)/
[(x-3)(x+2)] = (2x-6)/[(x-3)(x+2)];
ж) х/(х-8) = -3x/(24-3x) и 4х/(24-3х);
з)x/(6-x)^2; - не с чем сравнивать
и)11/(3x+4) = 11(2x-3)/[(2x-3)(3x+4)] = (22x-33)/
[(2x-3)(3x+4)]
12/(2х-3) = 12(3x+4)/
[(2x-3)(3x+4)] = (36x+48)/[(2x-3)(3x+4)];
к)х/(х-7) = -3x/(21-3x) и 11/(21-3х);
л)x/(7-x)^2 = x(x+7)/[
(x-7)^2*(x+7)] = (x^2+7x)/[(x-7)^2*(x+7)]
4/(x^2-49) = 4(x-7)/
[(x-7)^2*(x+7)] = (4x-28)/[(x-7)^2*(x+7)];
м)13/(3х-4) = 13(2x+3)/[(3x-4)(2x+3)] = (26x+39)/
[(3x-4)(2x+3)]
11/(2х+3) = 11(3x-4)/
[(3x-4)(2x+3)] = (33x-44)/[(3x-4)(2x+3)].
Похожие вопросы