Предмет: Математика,
автор: ananim953
катер прошел 5 км против течения и 14 км по течению реки затратив на это столько времени сколько ему понадобилось бы для прохождения 18 км по озеру. Какова собственая скорость катера если известно что скорость течения реки равна 3 км/ч
Ответы
Автор ответа:
0
Пусть х км/ч- собственная скорость катера, тогда (х + 3) км/ч - скорость по течению, а (х - 3) км/ч - скорость против течения. Значит, 5 км против течения катер прошел за 5/(х - 3) ч, 14 км по течению катер прошел за 14/(х + 3) ч, а 18 км по озеру - за 18/х ч. Составим и решим уравнение:
5/(х - 3) + 14/(х + 3) = 18/х;
умножим обе части уравнения на х(х - 3)(х + 3) ≠ 0 и получим:
5х(х + 3) + 14х(х - 3) = 18(х - 3)(х + 3),
5х² + 15х + 14х² - 42х = 18(х² - 9),
19х² - 27х = 18х² - 162,
х² - 27х + 162 = 0,
D = (-27)² - 4 · 1 · 162 = 729 - 648 = 81; √81 = 9.
х₁ = (27 - 9)/(2 · 1) = 18/2 = 9, х₂= (27 + 9)/(2 · 1) = 36/2 = 18.
Значит, собственная скорость катера может быть либо 9 км/ч, либо 18 км/ч.
Ответ: 9 км/ч или 18 км/ч.
Похожие вопросы
Предмет: География,
автор: soldy21
Предмет: Немецкий язык,
автор: rkulpanovic
Предмет: Биология,
автор: sweta0307
Предмет: Математика,
автор: andreykacom