Предмет: Алгебра,
автор: Аноним
Помогите решить пожалуйста!
cos6x+3sin3x+1=0
Ответы
Автор ответа:
0
Разложим cos6x по формуле косинуса двойного аргумента:
1 - 2sin²3x + 3sin3x + 1 = 0
-2sin²3x + 3sin3x + 2 = 0
2sin²3x - 3sin3x - 2 = 0
Пусть t = sin3x, t ∈ [-1; 1].
2t² - 3t - 2 = 0
D = 9 + 2•2•4 = 25 = 5²
t1 = (3 + 5)/4 = 8/4 = 2 - не уд. условию
t2 = (3 - 5)/4 = -1/2
Обратная замена:
sin3x = -1/2
3x =(-1)ⁿ+¹arcsinπ/6 + πn, n ∈ Z.
x = (-1)ⁿ+¹arcsinπ/18 + πn/3, n ∈ Z.
1 - 2sin²3x + 3sin3x + 1 = 0
-2sin²3x + 3sin3x + 2 = 0
2sin²3x - 3sin3x - 2 = 0
Пусть t = sin3x, t ∈ [-1; 1].
2t² - 3t - 2 = 0
D = 9 + 2•2•4 = 25 = 5²
t1 = (3 + 5)/4 = 8/4 = 2 - не уд. условию
t2 = (3 - 5)/4 = -1/2
Обратная замена:
sin3x = -1/2
3x =(-1)ⁿ+¹arcsinπ/6 + πn, n ∈ Z.
x = (-1)ⁿ+¹arcsinπ/18 + πn/3, n ∈ Z.
Автор ответа:
0
А почему у нас было 3sin3x,затем стало 3sinx?
Похожие вопросы
Предмет: Математика,
автор: dimasshoiko8
Предмет: Математика,
автор: fres35
Предмет: Алгебра,
автор: marinaplus607
Предмет: Математика,
автор: Dilechka97