Предмет: Геометрия,
автор: nikita09856
Медианы АА1 и ВВ1 равнобедренного треугольника АВС с основанием АВ пересекаются в точке О.Известно ,что угол ВВ1А=20 градусов, АС=4 дм.Найти ВВ1
Ответы
Автор ответа:
0
Как известно, медианы в точке пересечения делятся в отношении 2:1, считая от вершины. Обозначим OB_1=x, тогда AO=2x (не забываем, что Δ равнобедренный). Поскольку B_1 - середина стороны AC ⇒ AB_1=2. Применим теорему косинусов к треугольнику AB_1O:
(2x)^2=x^2+2^2-2x·2·cos 20°;
3x^2+4x cos 20°-4=0;
выпишем только положительный корень:
x=(-2 cos 20°+√(4cos^2 20°+12))/3; BB_1=3x
Ответ: -2 cos 20°+√(4cos^2 20°+12)
(2x)^2=x^2+2^2-2x·2·cos 20°;
3x^2+4x cos 20°-4=0;
выпишем только положительный корень:
x=(-2 cos 20°+√(4cos^2 20°+12))/3; BB_1=3x
Ответ: -2 cos 20°+√(4cos^2 20°+12)
Похожие вопросы
Предмет: Математика,
автор: rdrdragonkz
Предмет: География,
автор: Аноним
Предмет: Алгебра,
автор: sonya86805
Предмет: Биология,
автор: hayrullowaalin
Предмет: Физика,
автор: lena20012014