Предмет: Алгебра, автор: anyutka1007

сумма первых ста членов арифметической прогресии на 700 меньше чем сумма следующих ста ее членов. На сколько сумма первых трехсот членов этой прогрессии меньше суммы следующих трехсот ее членов

Ответы

Автор ответа: kalbim
0
S_{100}= frac{2a_{1}+99d}{2}*100=50*(2a_{1}+99d)=100a_{1}+4950d - сумма первый ста членов арифметической прогрессии
S_{200}= frac{2a_{1}+199d}{2}*200=100*(2a_{1}+199d)=200a_{1}+19900d - сумма двухсот первых членов арифметической прогрессии
Известно, что сумма первых ста членов на 700 меньше суммы последующих ста членов (т.е. сумма членов от 101-ого до 200-ого членов):
100a_{1}+4950d+700=200a_{1}+19900d-100a_{1}-4950d
200a_{1}+9900d+700=200a_{1}+19900d
10000d=700
d=0.07

S_{300}= frac{2a_{1}+299d}{2}*300=150*(2a_{1}+299d) - сумма первых трехсот членов арифметической прогрессии
S_{300}= frac{2a_{301}+299d}{2}*300=150*(2a_{301}+299d)=150*(2*(a_{1}+300d)+299d)=150*(2a_{1}+899d) - сумма вторых трехсот членов арифметической прогрессии
тогда их разность равна:
150*(2a_{1}+899d)-150*(2a_{1}+299d)=150*600d
d=0.07
150*600*0.07=6300

Ответ: на 6300 меньше
Похожие вопросы
Предмет: Химия, автор: Аноним