Предмет: Алгебра,
автор: tolik1976tolik3
Найдите все kk, при которых прямая y=kx+1y=kx+1 имела бы ровно две общих точки с параболой y=kx2−(k−3)x+ky=kx2−(k−3)x+k и при этом не пересекала бы параболу y=(2k−1)x2−2kx+k+94y=(2k−1)x2−2kx+k+94.
Ответы
Автор ответа:
0
5
y=kx+1 и y=kx^2−(k−3)x+k приравниваем, решаем и требуем чтобы было 2 корня D>0
kx+1=kx^2−(k−3)x+k
kx^2-(k-3)x+k-kx-1=0
kx^2-(2k-3)x+k-1=0
D=(2k-3)^2-4k(k-1)=4k^2-12k+9-4k^2+4k=-8k+9>0
8k<9
k<9/8
теперь y=kx+1 и y=(2k−1)x^2−2kx+k+9/4 приравниваем и требуем чтобы не было корней D<0
kx+1=(2k−1)x^2−2kx+k+9/4
(2k−1)x^2−2kx+k+9/4-kx-1=0
(2k−1)x^2−3kx+k+5/4=0
D=(3k)^2-4(2k-1)(k+5/4)=9k^2-(2k-1)(4k+5)=9k^2-8k^2+4k-10k+5=k^2-6k+5=(k-1)(k-5)<0
1<k<5
пересекаем k<9/8 и 1<k<5 - ответ 1<k<9/8
ответ 1<k<9/8
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Математика,
автор: feechkawinks78
Предмет: Русский язык,
автор: sagilaalezanova
Предмет: Литература,
автор: Kalashnikovaso
Предмет: История,
автор: Ivaniela