Предмет: Геометрия, автор: Thtvf

в треугольнике abc угол b равен 120, а длина стороны ab на 3 корня из 3 меньше полупериметра треугольника. найдите радиус окружности касающейся стороны bc и продолжений сторон ab и ac

помогите пожалуйста, очень надо.

 

 

 

 

Ответы

Автор ответа: mashkina
0

Центр данной окружности лежит на биссектрисе угла СВЕ.
Так как этот угол смежный с углом АВС,

он равен 60°, а угол ОВЕ=30°. 

По свойству отрезков касательных из точки вне окружности отрезки от В до точек касания равны, равны и отрезки от С до точек касания. Сумма их с соответствующими сторонами треугольника является его полупериметром.
Тогда длина стороны АВ на 3√3 меньше полупериметра треугольника, а АЕ - равна полупериметру, то
ВЕ=3√3
Радиус ОЕ:ВЕ= tg (30°) = 1/√3
Радиус ОЕ:ВЕ=R:3√3
R:3√3 = 1/√3
R=3√3 ·1/√3=3

Похожие вопросы
Предмет: Қазақ тiлi, автор: gnurgalieva04