Предмет: Алгебра,
автор: ghnnjn
Ребята умоляю,выручайте 2 задания очень ,как нужно:
1)Составьте формулу n-го члена арифметической прогрессии, если а₃=64, а₁₀=22.
Желательно написать решение.
2)Пятый член геометрической прогрессии больше четвертого на 168, а сумма третьего и четвертого членов прогрессии равна -28. Найдите первый член и знаменатель прогрессии
Ответы
Автор ответа:
0
1)a₃=a₁+2d=64
a₁₀=a₁+9d=22
Решаем эту систему и находим а₁ и d
a₁=64-2d
64-2d+9d=22
7d=22-64
7d=-42
d=-6
a₁=64-2(-6)=64+12=76
2) b₅-b₄=168
b₃+b₄=-28
b₁q⁴-b₁q³=168
b₁q²+b₁q³=-28
решаем
b₁q³(q-1)=168
b₁=168/q³(q-1)
b₁q²(1+q)=-28
q²(1+q)*168/q³(q-1)=-28
(1+q)*168/q(q-1)=-28
6(1+q)/q(q-1)=-1
6(1+q)=q(1-q)
6+6q=q-q²
q²+5q+6=0
D=5²-4*6=1
q₁=(-5-1)/2=-3
q₂=(-5+1)/2=-2
два варианта: b₁=168/(-3)³(-3-1)=168/(27*4)=42/27=14/9= 1 5/9 и
b₁=168/(-2)³(-2-1)=168/(8*3)=7
Ответ: b₁=1 5/9, q=-3 и b₁=7, q=-2
a₁₀=a₁+9d=22
Решаем эту систему и находим а₁ и d
a₁=64-2d
64-2d+9d=22
7d=22-64
7d=-42
d=-6
a₁=64-2(-6)=64+12=76
2) b₅-b₄=168
b₃+b₄=-28
b₁q⁴-b₁q³=168
b₁q²+b₁q³=-28
решаем
b₁q³(q-1)=168
b₁=168/q³(q-1)
b₁q²(1+q)=-28
q²(1+q)*168/q³(q-1)=-28
(1+q)*168/q(q-1)=-28
6(1+q)/q(q-1)=-1
6(1+q)=q(1-q)
6+6q=q-q²
q²+5q+6=0
D=5²-4*6=1
q₁=(-5-1)/2=-3
q₂=(-5+1)/2=-2
два варианта: b₁=168/(-3)³(-3-1)=168/(27*4)=42/27=14/9= 1 5/9 и
b₁=168/(-2)³(-2-1)=168/(8*3)=7
Ответ: b₁=1 5/9, q=-3 и b₁=7, q=-2
Похожие вопросы
Предмет: Химия,
автор: vaagnt0055
Предмет: Геометрия,
автор: lianamanucaran019
Предмет: Английский язык,
автор: milana234567
Предмет: Алгебра,
автор: nahkar928
Предмет: Математика,
автор: mirasimashev