Предмет: Математика,
автор: KETMENISBRO
как опрелить высоту трапеции
Ответы
Автор ответа:
0
1Если в условиях даны длины обоих оснований (a и b) и площадь (S) трапеции, начните вычисление высоты (h) с нахождения полусуммы длин параллельных сторон: (a+b)/2. Затем на полученное значение разделите площадь - результат и будет искомой величиной: h = S/((a+b)/2) = 2*S/(a+b).2Зная длину средней линии (m) и площадь (S) можно упростить формулу из предыдущего шага. По определению средняя линия трапеции равна полусумме ее оснований, поэтому для вычисления высоты (h) фигуры просто разделите площадь на длину средней линии: h = S/m.3Можно определить высоту (h) такого четырехугольника и в том случае, если даны только длина одной из боковых сторон (с) и угол (α), образуемый ей и длинным основанием. В этом случае следует рассмотреть треугольник, образуемый этой стороной, высотой и коротким отрезком основания, который отсекает опущенная на него высота. Этот треугольник будет прямоугольным, известная сторона будет в нем гипотенузой, а высота - катетом. Отношение длин катета и гипотенузы равно синусу противолежащего катету угла, поэтому для вычисления высоты трапеции умножьте известную длину стороны на синус известного угла: h = с*sin(α).4Такой же треугольник стоит рассмотреть и если даны длина боковой стороны (с) и величина угла (β) между ней и другим (коротким) основанием. В этом случае величина угла между боковой стороной (гипотенузой) и высотой (катетом) будет на 90° меньше известного из условий угла: β-90°. Так как отношение длин катета и гипотенузы равно косинусу угла между ними, то высоту трапеции вычислите умножением косинуса уменьшенного на 90° угла на длину боковой стороны: h = с*cos(β-90°).5Если в трапецию вписана окружность известного радиуса (r), формула вычисления высоты (h) будет очень проста и не потребует знания никаких других параметров. Такая окружность по определению должна касаться каждого из оснований только одной точкой и эти точки будут лежать на одной линии с центром круга. Это значит, что расстояние между ними будет равно диаметру (удвоенному радиусу), проведенному перпендикулярно основаниям, то есть совпадающим с высотой трапеции: h=2*r.Совет 2: Как найти высоту трапецииТрапецией считается такой четырехугольник, у которого две стороны параллельны, а две другие нет. Высотой трапеции называется отрезок, проведенный перпендикулярно между двумя параллельными прямыми. В зависимости от исходных данных ее можно вычислить по-разному.Вам понадобитсяЗнание сторон, оснований, средней линии трапеции, а так же, опционально, ее площадь и/или периметр.Инструкция1Одним из способов вычислить площадь трапеции является произведение высоты и средней линии. Допустим, что имеется равнобедренная трапеция. Тогда высота равнобедренной трапеции с основаниями a и b, площадью S и периметром P будет рассчитана так:
h=2 х S/(P-2 х d). (см. рис 1)2Если известна только площадь трапеции и ее основания, то формулу расчета высоты можно вывести из формулы площади трапеции S = 1/2h x (a+b):
h = 2S/(a+b).3Допустим, имеется трапеция с теми же данными, что и на рисунке 1. Проведем 2 высоты, получим прямоугольник, у которого 2 меньшие стороны являются катетами прямоугольных треугольников. Обозначим меньший катит за x. Он находится путем деления разницы длин между большим и меньшим основаниями. Тогда по теореме Пифагора квадрат высоты равен сумме квадратов гипотенузы d и катета x. Извлекаем корень из этой суммы и получим высоту h
h=2 х S/(P-2 х d). (см. рис 1)2Если известна только площадь трапеции и ее основания, то формулу расчета высоты можно вывести из формулы площади трапеции S = 1/2h x (a+b):
h = 2S/(a+b).3Допустим, имеется трапеция с теми же данными, что и на рисунке 1. Проведем 2 высоты, получим прямоугольник, у которого 2 меньшие стороны являются катетами прямоугольных треугольников. Обозначим меньший катит за x. Он находится путем деления разницы длин между большим и меньшим основаниями. Тогда по теореме Пифагора квадрат высоты равен сумме квадратов гипотенузы d и катета x. Извлекаем корень из этой суммы и получим высоту h
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Математика,
автор: topm4309
Предмет: Английский язык,
автор: mansur80808
Предмет: Математика,
автор: Аноним
Предмет: Алгебра,
автор: DictumFactum