Предмет: Математика,
автор: squirrel95
В ящике 12 деталей,из них 2 нестандартных. Случайным образом извлекают 3 детали. Найти вероятность того, что все извлеченные детали стандартны
Ответы
Автор ответа:
0
Вероятность того, что 3 случайно извлеченные детали являются стандартными, можно вычислить как отношение числа благоприятных вариантов к общему числу вариантов.
Число благоприятных вариантов - это число сочетаний из n=12-2=10 по k=3.
В общем случае число сочетаний из n по k C(k;n)=n!/(k!(n-k)!).
В данном случае С(3;10)=10!/(3!(10-3)!) = 10!/(3!7!).
Общее число вариантов - это число сочетаний из n=12 по k=3, т.е.
С(3;12) = 12!/(3!(12-3)!) = 12!/(3!9!).
Таким образом, вероятность того, что 3 случайно извлеченные детали являются стандартными:
P = С(3;10)/С(3;12) = (10!/(3!7!))/(12!/(3!9!) = (8*9)/(11*12) = 0,545.
Число благоприятных вариантов - это число сочетаний из n=12-2=10 по k=3.
В общем случае число сочетаний из n по k C(k;n)=n!/(k!(n-k)!).
В данном случае С(3;10)=10!/(3!(10-3)!) = 10!/(3!7!).
Общее число вариантов - это число сочетаний из n=12 по k=3, т.е.
С(3;12) = 12!/(3!(12-3)!) = 12!/(3!9!).
Таким образом, вероятность того, что 3 случайно извлеченные детали являются стандартными:
P = С(3;10)/С(3;12) = (10!/(3!7!))/(12!/(3!9!) = (8*9)/(11*12) = 0,545.
Похожие вопросы
Предмет: Математика,
автор: lalakakadada0
Предмет: Английский язык,
автор: Аноним
Предмет: Литература,
автор: nazarovanika900
Предмет: Алгебра,
автор: yarik66rus
Предмет: Литература,
автор: anyabobykina