Предмет: Алгебра, автор: capitanmat

произведение двух последовательных четных натуральных чисел равно 624. найдите эти числа

Ответы

Автор ответа: Аноним
0

Пусть 2n, 2n+2 - последовательные четные натуральные числа. Произведение их 2n*(2n+2), что по условию составляет 624

Составим уравнение:

2n * (2n+2) = 624 |: 4

n * (n+1) = 156

n² + n - 156 = 0

По теореме Виета

n₁ = - 13 — не удовлетворяет условию (не натуральное)

n₂ = 12.


Итак, искомые числа 12*2=24 и 12*2+2 = 26


Ответ: 24 и 26.

Похожие вопросы