Предмет: Математика,
автор: Елдос05
Бассейн наполняется двумя трубами за 4 часа. Первая труба может наполнить бассейн за 5 часов. За сколько вторая труба труба, действительно, может наполнить бассейн
Ответы
Автор ответа:
0
Задача решается через производительность (трубы) - как скорость наполнения бассейна. Можно сравнивать с задачами на путь.
1) p1 (V= S/t) = Б/5 - скорость первой - за 5 часов одна первая бассейн.
Две трубы работают вместе - скорости суммируются (одна уже известна)
2) T (t= S/V) = Б : (Б/5+ p2) = 4 часа
Упрощаем
3) Б = 4/5*Б + 4*р2
Выделяем неизвестное - р2
4) р2 = (Б/5)/4 = Б/20 - скорость второй трубы.
Время наполнения только второй трубой.
5) T= (S/V2) = Б : (Б/20) = 20 ч - время только второй тубы - ОТВЕТ.
1) p1 (V= S/t) = Б/5 - скорость первой - за 5 часов одна первая бассейн.
Две трубы работают вместе - скорости суммируются (одна уже известна)
2) T (t= S/V) = Б : (Б/5+ p2) = 4 часа
Упрощаем
3) Б = 4/5*Б + 4*р2
Выделяем неизвестное - р2
4) р2 = (Б/5)/4 = Б/20 - скорость второй трубы.
Время наполнения только второй трубой.
5) T= (S/V2) = Б : (Б/20) = 20 ч - время только второй тубы - ОТВЕТ.
Автор ответа:
0
круто)
Похожие вопросы
Предмет: Математика,
автор: radionovkirill2
Предмет: История,
автор: daniillymarev2011
Предмет: Қазақ тiлi,
автор: tamilanaberikbol
Предмет: Математика,
автор: кэт347
Предмет: Химия,
автор: myrzabekkopeno