Предмет: Алгебра, автор: VanyaMulyakaev

а) Если из четырех чисел, составляющих арифметическую прогрессию, вычесть соответственно 2, 7, 9 и 5, то получается числа, составляющие геометрическую прогрессию. Найдите эти числа.
б) Четыре числа составляющие геометрическую прогрессию. Если из первого числа вычесть 11, из второго 1, из третьего 3, из четвертого 9, то получится арифметическая прогрессия. Найдите эти числа.
Помогите пожалуйста решить и если можно распишите подробное решение со всеми формулами чтобы понятно было! Заранее Спасибо!

Ответы

Автор ответа: mefody66
0
1) Есть числа а1,а2,а3,а4.
a2=a1+d; a3=a1+2d; a4=a1+3d
Вычитаем.
a1-2=b1; a2-7=a1+d-7=b2=b1*q
a3-9=a1+2d-9=b3=b1*q^2
a4-5=a1+3d-5=b4=b1*q^3
Получаем систему
{ (a1-2)*q=a1+d-7
{ (a1-2)*q^2=(a1+d-7)*q=a1+2d-9
{ (a1-2)*q^3=(a1+2d-9)*q=a1+3d-5
Решение этой системы:
a1=5; d=8; q=2; b1=a1-2=3
Это числа 5; 13; 21; 29.
Если вычесть 2,7,9 и 5, будет
3; 6; 12; 24.
2) Есть числа b1, b2, b3, b4.
b2=b1*q; b3=b1*q^2; b4=b1*q^3
Вычитаем
b1-11=a1; b2-1=b1*q-1=a2=a1+d
b3-3=b1*q^2-3=a3=a1+2d
b4-9=b1*q^3-9=a4=a1+3d
Получаем систему
{ b1*q=b1+d-10
{ b1*q^2=(b1+d-10)*q=b1+2d-8
{ b1*q^3=(b1+2d-8)*q=b1+3d-2
Решение этой системы
b1=27; q=1/3; d=-8; a1=b1-11=16
Это числа 27; 9; 3; 1.
Если вычесть 11, 1, 3 и 9, будет
16, 8, 0, -8.
Похожие вопросы
Предмет: Биология, автор: 182003евамартынова11
Предмет: Литература, автор: OlgaShv