Предмет: Геометрия, автор: Пілока

Доведіть, що у рівнобедреному трикутнику медіани, проведені до бічних сторін, рівні.

    Очень нужно.....

Ответы

Автор ответа: настя1357
0

Пусть Δ ABC – равнобедренный с основанием AB, и CD – медиана, проведенная к основанию. В треугольниках CAD и CBD углы CAD и CBD равны, как углы при основании равнобедренного треугольника (по теореме 4.3), стороны AC и BC равны по определению равнобедренного треугольника, стороны AD и BD равны, потому что D – середина отрезка AB. Отсюда получаем, что Δ ACD = Δ BCD.

Из равенства треугольников следует равенство соответствующих углов: ACD = BCD, ADC = BDC. Из первого равенства следует, что CD – биссектриса. Углы ADC и BDC смежные, и в силу второго равенства они прямые, поэтому CD – высота треугольника. Теорема доказана.

Похожие вопросы
Предмет: Другие предметы, автор: milanashelkova