Предмет: Геометрия,
автор: pupgt
В треугольнике ABC AB=BC=34,AC=60.Найдите длину медианы BM.
Ответы
Автор ответа:
0
ВМ делит AB пополам, АМ=МС=30
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой => треугольник АВМ прямоугольный.
По теореме Пифагора - гипотенуза^2 = катет^2 + второй катет^2
ВМ^2 (гипотенуза) = 30^2+34^2=2056
ВМ = корень из 2056
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой => треугольник АВМ прямоугольный.
По теореме Пифагора - гипотенуза^2 = катет^2 + второй катет^2
ВМ^2 (гипотенуза) = 30^2+34^2=2056
ВМ = корень из 2056
Автор ответа:
0
корень из 2056?
Автор ответа:
0
16?
Автор ответа:
0
б, АВ гипотенуза. => АВ^2 = ВМ^2+AM^2 34^2=30^2+BM^2 1156=900+BM^2 BM^2=1156-900=256 ВМ=корень из 256=16
Похожие вопросы
Предмет: Математика,
автор: zlobnyjhren
Предмет: Химия,
автор: georiygeorgh
Предмет: Физика,
автор: kss770
Предмет: Физика,
автор: aina1243
Предмет: Алгебра,
автор: cHimeramd