Предмет: Геометрия,
автор: sofazmeevskaya
Через середину Д стороны АВ треугольника АВС проведены прямые перпендикулярные биссектрисам углов АВС и ВАС .Эти прямые пересекают стороны АС и ВС в точках М и К соответственно. Докажите что АМ=ВК
Заранее спасибо.
Срочно нужно.
Ответы
Автор ответа:
0
Рассмотри треугольники ВКD и АМD.
В них основания перпендикулярны биссектрисам, а биссектрисы перпендикулярны по условию основаниям -
в Δ ВКD основанию КD,
в Δ АМD основанию МD.
Следовательно, биссектрисы являются в этих треугольниках и высотами. Треугольник, в котором биссектриса является одновременно высотой - равнобедренный.
Треугольники ВКD и АМD равнобедренные.
По условию ВD=АD.
Следовательно, боковые стороны этих треугольников равны, отсюда ВК=АМ.
В них основания перпендикулярны биссектрисам, а биссектрисы перпендикулярны по условию основаниям -
в Δ ВКD основанию КD,
в Δ АМD основанию МD.
Следовательно, биссектрисы являются в этих треугольниках и высотами. Треугольник, в котором биссектриса является одновременно высотой - равнобедренный.
Треугольники ВКD и АМD равнобедренные.
По условию ВD=АD.
Следовательно, боковые стороны этих треугольников равны, отсюда ВК=АМ.
Похожие вопросы
Предмет: Алгебра,
автор: siumesp
Предмет: Английский язык,
автор: milanasport8
Предмет: Математика,
автор: Tanj5717
Предмет: Математика,
автор: voevodim02Yulilk
Предмет: Математика,
автор: demkristina22