Предмет: Алгебра, автор: ymarova

Докажите ,что многочлен x квадрате +y квадрате +1 при любых значениях x и y принимает положительные значения.
помогите пж сегодня алгебра

Ответы

Автор ответа: SashaVVolkova
0

x²-2x=(x-1)²-1

y²-4y=(y-2)²-4

x²-2x+y²-4y+6=(x-1)²-1+(y-2)²-4+6=(x-1)²+(y-2)²+1>0 при любых значениях х и у. Любое выражение в квадрате≥0, а сумма неотрицательных выражений будет тоже неотрицательной. Если к неотрицательному выражению прибавить положительную 1, то получим выражение >0.

Похожие вопросы
Предмет: Английский язык, автор: Аноним
Предмет: Алгебра, автор: katkakrasyuchka
Предмет: Литература, автор: zhenik020773