Предмет: Геометрия, автор: Nadq

Пожалуйста, помогите!!!

В треугольнике KLM угол L тупой, а сторона КМ равна 6. Найти радиус описанной около треугольника КLМ окружности, если известно, что на этой окружности лежит центр окружности, проходящей через точки К, М и точку пересечения высот треугольника КLM.

Ответы

Автор ответа: cos20093
0

Дополнительные обозначения. N - точка пересечения высот треугольника KLM, M1 - точка пересечения продолжения стороны ML и всоты KN, K1 - точка пересечения высоты MN и продолжения стороны KL. О1 - центр описанной окружности треугольника KLM, O2 - центр окружности, проходящей через точки KNM.

Теперь решение.

У четырехугольника NM1MK1 два угла прямые, поэтому углы KNM и KLM в сумме равны 180° (угол M1LK1 вертикальный к углу KLM). Угол KNM вписан в окружность с центром в точке О2 и опирается на дугу КМ этой окружности. Угол KLM вписан в окружность с центром в точке O1 и опирается в ней на дугу КМ (большую, которая лежит снаружи окружности с центром в точке О2). Поскольку О2 лежит на окружности с центром в точке О1, то угол КО2M вписан в окружность с центром в точке О1 и опирается на ту же дугу, что и угол KLM. При этом он является в окружности с центром в точке О2 центральным углом для дуги КМ, то есть он в 2 раза больше угла KNM. 

Если обозначить угол KNM = α; то угол КО2М = 2*α = угол KLM = 180° - α; откуда α = 60°;

Угол KLM = 120°,

и - по теореме синусов, 

6 = 2*R*sin(120°); R = 2√3;

 

Ненужное следствие - радиусы окружностей равны, и центр О1 лежит на окружности с центром в точке О2.

Похожие вопросы