Предмет: Алгебра,
автор: rrrrtttt01
Решите относительно x уравнение:
1)ax²+4x-2=0
2)x²-8x=c²-8c
3)x²-6a=a²+6x
Ответы
Автор ответа:
0
ах²+4х-2 = 0
D/4 = 4 +2a
уравнение имеет корни, если D/4≥0 ⇒
4+2a≥0; 2a≥-4; a≥ -2
значит, при а>-2
x₁ = (-2+√4+2a)/a
x₂ = (-2- √4+2a)/a
при а= -2 √4+2a = 0 , ⇒ х=1
при а< - 2 корней нет
2) х²-8х = с² -8с
х² - 8х -(с²-8с) = 0
D/4 = 16+(c²-8c)
c²-8c+16 ≤ 0
c²-8c+16 = 0
D/4 = 16 -16 = 0
с≤4
при с = 4 уравнение имеет один корень х= 4
при с < 4 уравнение имеет корни
х₁ = 4-√16+(c²-8c) и х₂ = 4+√16+(c²-8c)
при с> 4 уравнение не имеет корней
3) х² -6а = а²+6х
х²-6х-(а²+6а) = 0
D/4 = 9+(а²+6а)
9+(а²+6а)≥0
a²+6a+9 ≥0
D/4 =9-9=0
a= -3
значит уравнение имеет единственный корень
при а = -3
х =3
D/4 = 4 +2a
уравнение имеет корни, если D/4≥0 ⇒
4+2a≥0; 2a≥-4; a≥ -2
значит, при а>-2
x₁ = (-2+√4+2a)/a
x₂ = (-2- √4+2a)/a
при а= -2 √4+2a = 0 , ⇒ х=1
при а< - 2 корней нет
2) х²-8х = с² -8с
х² - 8х -(с²-8с) = 0
D/4 = 16+(c²-8c)
c²-8c+16 ≤ 0
c²-8c+16 = 0
D/4 = 16 -16 = 0
с≤4
при с = 4 уравнение имеет один корень х= 4
при с < 4 уравнение имеет корни
х₁ = 4-√16+(c²-8c) и х₂ = 4+√16+(c²-8c)
при с> 4 уравнение не имеет корней
3) х² -6а = а²+6х
х²-6х-(а²+6а) = 0
D/4 = 9+(а²+6а)
9+(а²+6а)≥0
a²+6a+9 ≥0
D/4 =9-9=0
a= -3
значит уравнение имеет единственный корень
при а = -3
х =3
Похожие вопросы
Предмет: Математика,
автор: andreigalinov
Предмет: Русский язык,
автор: qadyrdariga
Предмет: Другие предметы,
автор: arkadijabraman8
Предмет: История,
автор: polinalarionov1
Предмет: Математика,
автор: lyakhmasha