Предмет: Геометрия,
автор: angela135
1. В тетраэдре DABC, ребро DA=6корень2 см, AB=AC=14 см, угол DAB= углу DAC=45, BC=16 см. Найдите площадь грани BDC.
2. В параллелепипеде ABCDA1B1C1D1, точка M принадлежит PC, P принадлежит DD1, K принадлежит BC. Постройте сечение параллелепипеда с плоскостью, проходящей через плоскость M1P1K1/
Ответы
Автор ответа:
0
1)по теореме косинусов
BD^2=AD^2+AB^2-2*AD*AB*cos45
BD^2=(6√2)^2+14^2-2*(6√2)*14*(√2/2)=100
BD=10 см
треугольники ADB и ADC равные по двум сторонам и углу между ними
значит CD=BD=10 см
периметр треугольника BDC P=10+10+16=36 см
полупериметр р=Р/2=36/2=18 см
площадь грани BDC по формуле Герона
S=√(p(p-a)(p-b)(p-c))=√(18(18-10)(18-10)(18-16))=48 см2
ОТВЕТ 48 см2
Похожие вопросы
Предмет: Математика,
автор: malika2000h
Предмет: Русский язык,
автор: rusinoalisa
Предмет: Русский язык,
автор: coyojidyjb
Предмет: Алгебра,
автор: ksad1976
Предмет: Биология,
автор: beretar242