Предмет: Математика, автор: Никсоедствующий

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 36. Найдите стороны треугольника ABC.

Ответы

Автор ответа: karina27042005
0
Я вроде уже делала эту задачку. Все очень просто. 
Точка пересечения BE и AD обозначена мной, как K.
Треугольник BAD равнобедренный, потому что биссектриса угла B (то есть - BK) перпендикулярна основанию AD. 
AK = KD = 14;
Это означает, что AB = BD = BC/2. 
Само собой, отсюда сразу же следует AE = EC/2, поскольку BE - биссектриса.
Если теперь провести через точку E прямую EF II AD, то DF = CF/2; (F лежит на BC)
Это означает, что DF = BD/3; следовательно, KE = BK/3;
Отсюда BK = 21; KE = 7; 
AB = √(14^2 + 21^2) = 7√13; BC = 14√13;
AE = √(7^2 + 14^2) = 7√5; AC = 21√5;
Похожие вопросы