Предмет: Алгебра,
автор: MILKASHOOK
Объясните , почему уравнение не имеет корней .
а.) x²= -1
б.) ║x║= -5
в.) x⁶+1=0
г.) ║x║+10=0
Ответы
Автор ответа:
0
И квадрат, и модуль числа не могут быть отрицательными.
x²=-1
левая часть уравнения - квадрат числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. квадрат числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
|x|=-5
левая часть уравнения - модуль числа х, правая часть - число " -5", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
x⁶+1=0
x⁶=-1
левая часть уравнения - шестая (чётная) степень числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. чётная степень числа не может быть отрицательной, делаем вывод: уравнение не имеет корней.
|x|+10=0
|x|=-10
левая часть уравнения - модуль числа х, правая часть - число " -10", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
x²=-1
левая часть уравнения - квадрат числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. квадрат числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
|x|=-5
левая часть уравнения - модуль числа х, правая часть - число " -5", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
x⁶+1=0
x⁶=-1
левая часть уравнения - шестая (чётная) степень числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. чётная степень числа не может быть отрицательной, делаем вывод: уравнение не имеет корней.
|x|+10=0
|x|=-10
левая часть уравнения - модуль числа х, правая часть - число " -10", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
Похожие вопросы
Предмет: Алгебра,
автор: rkazakov251228
Предмет: Алгебра,
автор: Аноним
Предмет: Литература,
автор: bogdanpogosan58
Предмет: Алгебра,
автор: a91081295671