Предмет: Геометрия, автор: Alisa2012m

Срочно нужно ТочкаS равноудалена от каждой стороны правильного треугольника ABC,сторона которого равна 2корень из 3см,найти расстояние от т.S до АB,если расстояние от т.S до плоскости (ABC) равно корень из 3см

Ответы

Автор ответа: NastyaSmakova
0

Решение:

 1) Рассмотри основание. Это квадрат АВСD, т.е АВ=ВС=СD=АD В нем диагональ АС= 2V2 см. В этом квадрате рассмотри треугольник АВС. Угол В=90 град., АВ=ВС, значит по теореме Пифагора: АС^2 = AB^2 + BC^2 = 2AB^2 => AB^2 = AC^2 / 2 = (2V2)^2 / 2 = 4 см^2 => AB = V4 = 2 см - сторона квадрата основания

 2) Точка S равноудалена от каждой стороны квадрата. Это значит, что расстояния AS=BS=CS=DS и проекция точки S на основание АВСD будет находиться в центре квадрата АВСD в точке О.

 3) Теперь рассмотри треугольник АОS. Угол АОS= 90 град. OS = 3 см АО = 1/2 AC = 1/2*(2V2) = V2 см По теореме Пифагора: AS=AO^2 + OS^2 = (V2)^2 + 3^2 = 2+9=11 см.

 4) Расстояние от точки S до стороны АВ измеряется перпендикуляром SK, проведенным из точки S к стороне АВ. Точка К лежит на АВ и АК=КВ=AB/2=2/2=1 cм Для этого рассмотри еще один треугольник - ASB. В нем: SA=SB= 11 см АВ =2 см => SA^2 = AK^2 + SK^2 => SK^2 = SA^2 - AK^2 = 11^1 - 1^2 = 121-1=120 SK=V120=2V30 см

Похожие вопросы