Помогите, пожалуйста. Четырехугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром О. Найдите расстояние от точки О до стороны AB, если известно, что CD=a. Можно просто ответ.
Ответы
Если диагонали четырёхоугольника перпендикулярны, то этот четырёхугольник - ромб, а значит, все его стороны равны, т.е. АВ=ВС=СD=АD=а.
Если этот ромб вписали в окружность, то он-правильный. А правильный ромб-это квадрат.
Значит, АВСD-квадрат.
Точка О является центром окружности.
Также она является серединой пересечения диагоналей.
По теореме Пифагора находим, что ОВ= а*корень из 2 и всё поделить на 2
Пусть ОН-расстояние от точки О до стороны АВ. ВН=половине АВ= а2
Находим ОН. Также по теореме Пифагора.
ОН= а2