Предмет: Геометрия,
автор: Joker20133
Найдите объем шарового сектора, если радиус шара равен 6 см, а высота конуса, образующая сектор, составляет треть диаметра шара.
Ответы
Автор ответа:
0
Шаровой сектор — это часть шара, ограниченная кривой поверхностью шарового сегмента и конической поверхностью, основанием которой служит основание сегмента, а вершиной — центр шара.
Формула объема шарового сектора:
V = (2/3)*πR²*h, где h - высота сегмента.
В нашем случае R=H+h, где Н - высота конуса, а h- высота сегмента.
Тогда h = R-H = 6-4 =2, так как
Н = (1/3)*2*R (дано).
Значит V = (2/3)*π*36*2 = 48π.
Ответ: объем шарового сектора равен 48π.
Формула объема шарового сектора:
V = (2/3)*πR²*h, где h - высота сегмента.
В нашем случае R=H+h, где Н - высота конуса, а h- высота сегмента.
Тогда h = R-H = 6-4 =2, так как
Н = (1/3)*2*R (дано).
Значит V = (2/3)*π*36*2 = 48π.
Ответ: объем шарового сектора равен 48π.
Приложения:
Похожие вопросы
Предмет: История,
автор: Aslan071
Предмет: Математика,
автор: Аноним
Предмет: Русский язык,
автор: Love34mi
Предмет: Биология,
автор: Аноним
Предмет: Алгебра,
автор: Kalipso07