Предмет: Геометрия, автор: alexeewna01

Основания трапеции равны 7 и 49, одна из боковых сторон равна 18 , а косинус угла между ней и одним из оснований равен Найдите площадь трапеции.

Ответы

Автор ответа: KuOV
0
Исправленное условие: Основания трапеции равны 7 и 49, одна из боковых сторон равна 18 , а косинус угла между ней и одним из оснований равен 2√10/7. Найдите площадь трапеции.

Косинус угла между боковой стороной и основанием положительный, значит это острый угол.
sin∠A = √(1 - cos²∠A) = √(1 - 40/49) = √(9/49) = 3/7
Проведем высоту ВН.
ΔАВН: ∠АНВ = 90°
             sin∠BAH = BH/AB
             BH = AB · sin∠A = 18 · 3/7 = 54/7

Sabcd = (AD + BC)/2 · BH
 Sabcd = (49 + 7)/2 · 54/7 = 56/2 · 54/7 = 8 · 27 = 216


Приложения:
Похожие вопросы
Предмет: Геометрия, автор: habirovailona6