Предмет: Математика, автор: maksimpanafidin

8x^3-6x-1=0 решить уравнение по формуле кардано

Ответы

Автор ответа: Аноним
0
Представим это уравнение в виде:
x^3+0cdotx^2-0.75x-0.125=0 - разделили на 8

Q= frac{a^2-3b}{9} = frac{0^2+3cdot0.75}{9} =0.25\ \ R= frac{2a^3-9ab+27c}{54} = frac{2cdot0^3+9cdot0cdot0.75-27cdot0.125}{54} =-0.062

т. к. R^2 textless  Q^3 отсюда следует, что по методу Виета-Кардано, уравнение имеет три действительных корня

phi=arccos( frac{R}{ sqrt[]{Q^3} } )/3=0.698

Вычисляем корни

x_1=-2 sqrt{Q} cdot cosphi-a/3=-0.766\ \ x_2=-2 sqrt{Q}cos(phi+ frac{2pi}{3})-a/3=0.94\ \ x_2=-2 sqrt{Q}cos (phi - frac{2pi}{3})-a/3=-0.174
Похожие вопросы