Предмет: Геометрия, автор: BetuganovaIndira

Какова вероятность того, что наудачу брошенная в круг точка окажется внутри вписанного в него правильного шестиугольника?

Ответы

Автор ответа: Loudon
0
Для нахождения вероятности этого надо найти соотношение площадей круга и шестиугольника. Площадь круга, как известно:
S = П*r^2, где П=3,14, r - радиус. 
Теперь найдём площадь вписанного правильного щестиугольника (нарисуйте иллюстрацию, так будет понятнее). Она равна шести площадям треугольника, образованного стороной шестиугольника и двумя радиусами. Так как угол этого треугольника, лежащий у центра окружности, равен 360 / 6 = 60, то этот треугольник вообще равносторонний и его сторона равна r. Найти площадь его можно по формуле Герона, если проходили (для неё достаточно только трёх сторон), или более классическим путём - как произведение половины основания на высоту. Основание r, высота легко выводится тригонометрически: для равностороннего треугольника высота равна r*cos(60/2) =  sqrt{3} / 2 * r
Отсюда площадь треугольника: 1/2 * r *  sqrt{3}  / 2 * r =  sqrt{3} / 4* r^2
Площадь шестиугольника равна: 6 *   sqrt{3} / 4* r^2 = 1,5 *  sqrt{3} * r^2
Теперь делим её на площадь круга:
1,5 *  sqrt{3} * r^2 / (П*r^2) = 1,5 *  sqrt{3} / П
Численно это примерно равно 0,83 или 83%.
Автор ответа: Loudon
0
Спрашивайте, если что непонятно.
Похожие вопросы
Предмет: Физика, автор: tanyafr2000