Предмет: Геометрия,
автор: Piknic
Диагонали параллелограмма ABCD пересекаются в точке O. Биссектрисы углов OAD и CBO пересекаются в точке K. Найти величину угла AKB, если OCKD - параллелограмм.
Биссектрисы углов НЕ параллельны, а пересекаются за пределами параллелограмма.
Рисунок приблизительный~
Приложения:
Ответы
Автор ответа:
0
Дано: ОСКD - параллелограмм.
Если у четырехугольника пара противоположных сторон параллельны и равны, то четырехугольник – параллелограмм.
Следовательно, АОКD и ВОКС - параллелограммы.
Значит ВС=ОК=АD.
Но ВК - биссектриса угла и диагональ параллелограмма ВОКС, отсюда ВС=СК=ВО.
Тогда ВD=2ВС.
С другой стороны АК - биссектриса угла и диагональ параллелограмма АОКD, отсюда АD=DK, но АD=ВС, значит DK=CK и ОСКD -ромб.
Значит СD перпендикулярна ОК.
Подкорректируем рисунок (рис.2)
Тогда и ВС перпендикулярна СD и АВСD - прямоугольник, в котором диагонали равны удвоенной стороне ВС(АD).
Из этого следует, что <BDC=<ACD=30°, а <СBD=<СAD=60°.
ВК и АК - биссектрисы, значит <ABK = <BAK = 60°.
Итак, в треугольнике АВК два угла при стороне АВ равны по 60°, следовательно и угол АКВ=60°.
Ответ: угол АКВ = 60°.
Если у четырехугольника пара противоположных сторон параллельны и равны, то четырехугольник – параллелограмм.
Следовательно, АОКD и ВОКС - параллелограммы.
Значит ВС=ОК=АD.
Но ВК - биссектриса угла и диагональ параллелограмма ВОКС, отсюда ВС=СК=ВО.
Тогда ВD=2ВС.
С другой стороны АК - биссектриса угла и диагональ параллелограмма АОКD, отсюда АD=DK, но АD=ВС, значит DK=CK и ОСКD -ромб.
Значит СD перпендикулярна ОК.
Подкорректируем рисунок (рис.2)
Тогда и ВС перпендикулярна СD и АВСD - прямоугольник, в котором диагонали равны удвоенной стороне ВС(АD).
Из этого следует, что <BDC=<ACD=30°, а <СBD=<СAD=60°.
ВК и АК - биссектрисы, значит <ABK = <BAK = 60°.
Итак, в треугольнике АВК два угла при стороне АВ равны по 60°, следовательно и угол АКВ=60°.
Ответ: угол АКВ = 60°.
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: anutakrasnovid
Предмет: Русский язык,
автор: lizok201036
Предмет: История,
автор: Kristinakorneva35
Предмет: Математика,
автор: gulmiraslando
Предмет: Алгебра,
автор: лиса1608