Предмет: Геометрия,
автор: volk9871
скалярное произведение вкторов
Ответы
Автор ответа:
0
Формулы скалярного произведения векторов заданных координатами
Формула скалярного произведения векторов для плоских задач
В случае плоской задачи скалярное произведение векторов a = {ax ; ay} и b = {bx ; by} можно найти воспользовавшись следующей формулой:
a · b = ax · bx + ay · by
Формула скалярного произведения векторов для пространственных задач
В случае пространственной задачи скалярное произведение векторовa = {ax ; ay ; az} и b = {bx ; by ; bz} можно найти воспользовавшись следующей формулой:
a · b = ax · bx + ay · by + az · bz
Формула скалярного произведения n -мерных векторов
В случае n-мерного пространства скалярное произведение векторовa = {a1 ; a2 ; ... ; an} и b = {b1 ; b2 ; ... ; bn} можно найти воспользовавшись следующей формулой:
a · b = a1 · b1 + a2 · b2 + ... + an · bn
Скаля́рное произведе́ние (иногда внутреннеепроизведение) — операция над двумявекторами, результатом которой является число [когда рассматриваютсявекторы, числа часто называют скалярами], не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними.
Формула скалярного произведения векторов для плоских задач
В случае плоской задачи скалярное произведение векторов a = {ax ; ay} и b = {bx ; by} можно найти воспользовавшись следующей формулой:
a · b = ax · bx + ay · by
Формула скалярного произведения векторов для пространственных задач
В случае пространственной задачи скалярное произведение векторовa = {ax ; ay ; az} и b = {bx ; by ; bz} можно найти воспользовавшись следующей формулой:
a · b = ax · bx + ay · by + az · bz
Формула скалярного произведения n -мерных векторов
В случае n-мерного пространства скалярное произведение векторовa = {a1 ; a2 ; ... ; an} и b = {b1 ; b2 ; ... ; bn} можно найти воспользовавшись следующей формулой:
a · b = a1 · b1 + a2 · b2 + ... + an · bn
Скаля́рное произведе́ние (иногда внутреннеепроизведение) — операция над двумявекторами, результатом которой является число [когда рассматриваютсявекторы, числа часто называют скалярами], не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними.
Автор ответа:
0
|a|*|b|*cos(a;b) (скалярное произведение рано произведению длин этих векторов на косинус угла между ними)
Похожие вопросы
Предмет: Қазақ тiлi,
автор: gokolres
Предмет: Математика,
автор: almirasa2kas
Предмет: Другие предметы,
автор: semenoivan8747
Предмет: Математика,
автор: goshenka112211