Предмет: Геометрия,
автор: miseryred
В треугольник с периметром, равным 84, вписана окружность. Одна из точек касания делит сторону треугольника на отрезки с длинами 12 и 14. Найдите площадь треугольника.
Ответы
Автор ответа:
5
Треугольник АВс, М - точка касания на АВ, К - точка касания на ВС, Н- точка касания на АС, АМ=14. ВМ=12
АМ=АН =14 как касательные ко кружности, проведенные из одной точки,
ВМ=ВК=12,
АМ+АН+ВМ+ВК+СК+СН=периметр=84
14+14+12+12+СК+СН=84
84-52 = СК+СН, СК=СН=16,
АВ=26, ВС=28 АС=30
Площадь = корень (p x (p-a) x (p-b)x (p-c))?где р -полупериметр, остальное стороны
полупериметр = 84/2=42
Площадь= корень(42 х (42-26) х (42 х 28) х (42-30)) = корень (42 х 16 х 14 х 12) = 336
Похожие вопросы
Предмет: Русский язык,
автор: Arisha1006
Предмет: Другие предметы,
автор: ivanovaanastasiya533
Предмет: Окружающий мир,
автор: Vuqar812h
Предмет: Математика,
автор: bersenbtob
Предмет: Математика,
автор: Deylony