Предмет: Геометрия, автор: Kaaaaaaatya

ОЧЕНЬ СРОЧНО! ПОМОГИТЕ,ПОЖАЛУЙСТА
Длина ребра куба ЛABCDA1B1C1D1равна 4а, точ ка P — середина отрезка DC. Найдите: а) расстояние между серединами отрезков A1С и АР; б) угол между прямыми A1С и АР.
4. Дан вектор b {0; 0; —5}. Найдите множество точек М, для которых ОМ ∙ b = 0, если О — начало координат

Ответы

Автор ответа: dnepr1
0
Примем а = 1.
Поместим куб в систему координат вершиной В в начало и ребром ВА по оси ОХ.
а) Определяем координаты точек:
А(4;0;0),
Р(2;4;0),
А1(4;0;4),
С(0;4;0).
Находим координаты середин отрезков A1С и АР (точки Е и К соответственно): Е(2;2;2), К(3;2;0).
Расстояние 
между серединами отрезков A1С и АР равно:
ЕК = 
√(1²+0²+2²) = √5.
С учетом коэффициента "а" ЕК = а√5.

4) Если скалярное произведение двух векторов равно нулю, то угол между ними составляет 90 градусов.
 По условию вектор b направлен по оси ОZ (его координаты {0; 0; -5}).
Поэтому любая точка в плоскости ХОУ составляет прямой угол с вектором b.
Ответ: М ∈ ХОУ.


Похожие вопросы
Предмет: Українська мова, автор: nataliakalitak5