Предмет: Геометрия, автор: linasubbotina1

DABC-тетраэдр, точки М и F-середины ребер AD и DC соответственно. Постройте сечение тетраэдра плоскостью MBF и вычислите его периметр,если длина ребра тетраэдра равна 4 см.

Приложения:

Ответы

Автор ответа: DanielHelper
0
Все достаточно просто.
MB и FB это катеты треугольников DMB и DFB, эти треугольники равны, но они нам не известны, их мы будем сейчас находить.
Второй катет находится делением ребра тетраэдра на 2, то есть 4/2 = 2 см..
Нам известны гипотенузы треугольников DMB и DFB, они тоже равны, это ребро тетраэдра, то есть 4 см..
Вычисляем длину катетов MB и FB.
 DB^{2}  4^{2} =  2^{2} + MB^{2} ,
MB^{2}  =  4^{2}  -  2^{2} ,
MB^{2}  = 16 - 4 = 12.
MB = FB =  sqrt{12} = 3.4641
Теперь найдем чему равен отрезок MF.
Так как мы имеем дело с тетраэдром, а у него все стороны равны, рассекая пополам треугольник ADC мы сверху получаем треугольник MDF у которого также все стороны равны. Таким образом MF = 2.
Периметр сечения MBF равен 2 + 3.4641 * 2 = 8.9282.
Ответ: Периметр сечения MBF = 8.9282.
Автор ответа: linasubbotina1
0
Большое спасибо))
Автор ответа: linasubbotina1
0
что такое DMB^2??
Автор ответа: DanielHelper
0
Это была опечатка, там нужно записать DB^2.Это квадрат гипотенузы DB. DMB это весь треугольник, нам известен один его катет изначально и гипотенуза.
Автор ответа: DanielHelper
0
Внес изменения.
Похожие вопросы
Предмет: Математика, автор: katerina4196
Предмет: Қазақ тiлi, автор: Аноним