Предмет: Математика,
автор: AlinkaMalinkaKalinka
Помогите!!!!!!!!!!!
Сторона основания АВС правильной треугольной пирамиды МАВС равна 6 см, а отрезок соединяющий вершину М пирамиды с центром О основания,- 8 см найдите боковую поверхность пирамиды
Ответы
Автор ответа:
0
Sбок.пов=(1/2)*Pосн*h.
h - апофема
CK_|_AB, СК - высота(медиана, биссектриса) основания
ОК=(1/3)СК
ΔАВС: AB=BC=AC=6 см, CK=6√3/2. CK=3√3 см
ОК=(3√3)/3=√3
высота правильного треугольника вычисляется по формуле:
ΔMOK: <MOK=90°, OK=√3 см, OM=8 см
по теореме Пифагора: МК²=ОК²+ОМ²
МК²=(√3)²+8²=3+64=67, МК=√67 см
Sбок. пов=3*6*√67/2
Sбок. пов=9√67 cм²
h - апофема
CK_|_AB, СК - высота(медиана, биссектриса) основания
ОК=(1/3)СК
ΔАВС: AB=BC=AC=6 см, CK=6√3/2. CK=3√3 см
ОК=(3√3)/3=√3
высота правильного треугольника вычисляется по формуле:
ΔMOK: <MOK=90°, OK=√3 см, OM=8 см
по теореме Пифагора: МК²=ОК²+ОМ²
МК²=(√3)²+8²=3+64=67, МК=√67 см
Sбок. пов=3*6*√67/2
Sбок. пов=9√67 cм²
Похожие вопросы
Предмет: Английский язык,
автор: 95noh95
Предмет: Информатика,
автор: sahibahanm
Предмет: Математика,
автор: Uka4540
Предмет: Математика,
автор: antonf610