Помогите плиз. Вписанная в прямоугольный треугольник окружность делит гипотенузу на отрезки длиной 3 и 10.Найдите площадь треугольника
Ответы
1 катет = r+3
2 катет =r+10
По теореме Пифагора получаем: АВ2+ АС2= ВС2.
(r + 5)2+ (r + 12)2= 172;
r2+ 10r + 25 + r2+ 24r + 144 = 289;
2r2+ 34r – 120 = 0;
r2+ 17r – 60 = 0; r = 3.
Катеты равны 5 + r = 8 и 12 + r = 15.
Осталось только найти площадь: 8*15/2=60
Треугольник АВС, уголА=90, точка М касание на ВС , ВМ=3, СМ=10, точка Н касание на АС,
точка Р касание на АВ
МС=СН как касательные проведенные из одной точки = 10,
ВМ = ВР=3, как касательные из одной точки,
АН=АР= а , как касательные из одной точки
АС = а + 10, АВ = 3 + а
ВС в квадрате = АВ в квадрате + АС в квадрате
169 = (а+10) в квадрате + (3+а) в квадрате
2 х а в квадрате + 26а - 60=0
а = (-26 +-(плюс. минус) корень (676 + 4 х 2 х 60)) / 2 х 2
а = (-26+- 34)/4
а =4
АС = 4+10=14, АВ=4+3=7
Площадь = 1/2АС х АВ = 1/2 х 14 х 7 =49