Предмет: Алгебра,
автор: alina281998
решите неравенства: 5х2+3х-8>0
(2х2-3х+1)(х-3)>=0
х2-2х-15>=0
2х+3/х+2<1
(5х+4)(3х-2)/х+3<=(3х-2)(х+2)/1-х
Ответы
Автор ответа:
6
5x² + 3x - 8 > 0
5x² + 3x - 8 = 0
D = 9 + 8·4·5 = 169 = 13²
5(x - 1)(x + 1,6) > 0
(x - 1)(x + 1,6) > 0
x ∈ (-∞; -1,6) U (1; +∞)
(2x² - 3x + 1)(x - 3) ≥ 0
2x² - 3x + 1 = 0
D = 9 - 2·4 = 1
2(x - 1)(x - 0,5)(x - 3) ≥ 0
(x - 1)(x - 0,5)(x - 3) ≥ 0
- 0,5 + 1 - 3 +
-------------• ---------------• --------------------------• -----------> x
x ∈ [0,5; 1] U [3; +∞)
x² - 2x - 15 ≥ 0
x² - 2x + 1 - 4² ≥ 0
(x - 1)² - 4² ≥ 0
(x - 1 - 4)(x - 1 + 4) ≥ 0
(x - 5)(x + 3) ≥ 0
x ∈ (-∞; -3] U [5; +∞)
Нули числителя: x = -1; 2/3; 2,5.
Нули знаменателя: x = -3; 1
- -3 + -1 - 2/3 + 1 - 2,5 +
----°-------------• -------------• ----------------°-------------------• ------------> x
Ответ: x ∈ (-3; -1] U [2/3; 1) U [2,5; +∞).
5x² + 3x - 8 = 0
D = 9 + 8·4·5 = 169 = 13²
5(x - 1)(x + 1,6) > 0
(x - 1)(x + 1,6) > 0
x ∈ (-∞; -1,6) U (1; +∞)
(2x² - 3x + 1)(x - 3) ≥ 0
2x² - 3x + 1 = 0
D = 9 - 2·4 = 1
2(x - 1)(x - 0,5)(x - 3) ≥ 0
(x - 1)(x - 0,5)(x - 3) ≥ 0
- 0,5 + 1 - 3 +
-------------• ---------------• --------------------------• -----------> x
x ∈ [0,5; 1] U [3; +∞)
x² - 2x - 15 ≥ 0
x² - 2x + 1 - 4² ≥ 0
(x - 1)² - 4² ≥ 0
(x - 1 - 4)(x - 1 + 4) ≥ 0
(x - 5)(x + 3) ≥ 0
x ∈ (-∞; -3] U [5; +∞)
Нули числителя: x = -1; 2/3; 2,5.
Нули знаменателя: x = -3; 1
- -3 + -1 - 2/3 + 1 - 2,5 +
----°-------------• -------------• ----------------°-------------------• ------------> x
Ответ: x ∈ (-3; -1] U [2/3; 1) U [2,5; +∞).
Похожие вопросы
Предмет: Другие предметы,
автор: msayzaana
Предмет: Қазақ тiлi,
автор: Котик3881
Предмет: Русский язык,
автор: Ekaterina21581
Предмет: Математика,
автор: Lilo12345678
Предмет: Другие предметы,
автор: shemitovish